

Self-Assessment: Mathematics and Mathematics Interventions

Middle School Matters Institute An initiative of the George W. Bush Institute in partnership with The Meadows Center for Preventing Educational Risk

© 2016 The University of Texas at Austin/The Meadows Center for Preventing Educational Risk

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

For inquiries about using this product outside the scope of this license, contact licensing@meadowscenter.org

ABOUT THE SELF-ASSESSMENT

+ -× ÷ Before developing specific implementation goals, educators must take stock of which research-based practices are already in place and which practices are lacking or need improvement. This template guides users through a self-reflection process for **math** practices implemented throughout all content areas. Users should follow these steps for **each principle**.

INSTRUCTIONS

- Step 1: Convene a Middle School Matters Leadership team and set aside 1-2 hours for the self-assessment.
- Step 2: Gather all available data (see page 4).
- **Step 3: Assess current instructional practices,** using data gathered in step 2, and indicate which instructional traits are implemented: a) consistently, b) inconsistently, or c) not at all.

Consult the MSM Field Guide for more information:

https://greatmiddleschools.org/wp-content/uploads/2016/06/3c_FieldGuide_Math_July19.pdf

Step 4: Summarize assessment results and determine the level of implementation according to the rubric (adapted from Fixsen, Naoom, Blase, Friedman, & Wallace, 2005).

- 1. No Implementation: No evidence of implementation.
- 2. Exploration: Willingness to implement, but little to no evidence of actual implementation. May be in planning stage.
- 3. Initial Implementation: Evidence indicates that implementation has begun but is largely inconsistent.
- 4. Full Implementation: Strong evidence of implementation of all or most of the traits and practices.
- 5. Sustainability: Strong evidence of implementation with processes in place for continued implementation in the future.

NEXT STEPS: GOAL SETTING AND ACTION PLANNING

After conducting this self-assessment, select a few key principles to focus on for the upcoming school year. Using the MSMI Action Plan Template (<u>https://greatmiddleschools.org/resources/action-plan-templates/</u>), develop measurable goals with specific action steps and deadlines for each chosen principle.

Self-Assessment: Mathematics and Mathematics Interventions

Applicable Content Areas: Mathematics; science and social studies (predominantly Principle 1)

Date:	School	District	
Participating team members	:		
Sources of Data:			
STATE/DISTRICT CURRICULU	Μ		
Teacher Editions of math,	science, and social studie	es curricula	
Scope and sequence of n	nath, science, and social	studies curricula	
State standards for math,	science, and social studie	es	
SCHOOL/TEACHER INSTRUC	TIONAL DELIVERY		
Range of lesson plans for	math, science, and socia	Il studies classes	
Walk-through or classroor	m observations for math, s	science, and social studies classes	
Notes from department te	am meetings or grade lev	vel team meetings	
List of professional develo	pment sessions provided a	or attended over the past year	
Description of intervention	groups/intervention class	ses, including schedule and curriculum	
STUDENT DEMOGRAPHIC AN	ND PERFORMANCE DAT	TA	
Demographics, including	number of English learners	rs and students in special education	
Course passing rates for r	math, science, and social	studies	
Scores from state assessm	ents and end-of-course as	sessments	
Scores from standardized	achievement tests		
Scores from interim assess	sments and/or curriculum-t	based assessments	
List of students receiving in	ntervention and their progr	ress within those interventions	

Principle 1: Establish school wide practices for enhancing mathematics understanding within relevant content area instruction.

Consistently	Inconsistently	Not at All	Practice 1: Encourage students to apply their understanding of mathematics concepts and procedures to draw conclusions and propose solutions about history, science, social studies, economics, and other content areas.
			a) Content area teachers (e.g., science, social studies) assign student activities and assignments that require students to apply their understanding of mathematics concepts and procedures.
			b) Content area teachers require students to use mathematics to summarize, illustrate, explain or analyze information.
			c) Content area teachers require students to use mathematics to draw conclusions and propose solutions.
Consistently	Inconsistently	Not at All	Practice 2: Ask students to analyze events and phenomena from a quantitative perspective and to use their analyses to develop arguments and provide justifications.
			a) Content area teachers require students to use mathematics to analyze events and phenomena from a quantitative perspective.
			 b) Content area teachers require students to use mathematical analyses to develop arguments and provide justifications.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 2: Use a universal screener to identify students at risk for mathematics difficulties and to determine interventions to provide these at-risk students. Monitor the development of mathematics knowledge and skills of identified students.

Consistently	Inconsistently	Not at All	Practice 1: Identify a system for screening and progress monitoring that prioritizes content and skills that are necessary for subsequent mathematics development.
			a) The school has a process for monitoring student progress and determining which students need intervention in mathematics.
			b) The school consistently administers a universal screener that reflects mathematics knowledge and skills that are essential for grade-level proficiency and relates to the domain in which potential risk is being evaluated.
Consistently	Inconsistently	Not at All	Practice 2: Select a cut score for screening that balances the need to help the most at-risk students with the resources available.
			a) In the universal screening system, cut scores are used to identify students at risk of failure along a spectrum of scores (significant risk, moderate risk, and minimal risk).
			b) The appropriate cut score is determined in a manner that ensures children who are in need of additional support are matched with the resources available.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 3: Help students recognize number systems and expand their understanding beyond whole numbers to integers and rational numbers. Use number lines as a central representational tool in teaching this and other rational number concepts.

Consistently	Inconsistently	Not at All	Practice 1: Use measurement activities and number lines to help students understand that fractions and decimals are numbers and share number properties.
			a) Teachers use measurement and number lines to illustrate that fractions and decimals have magnitude similar to whole numbers.
			b) Teachers assign students tasks that require them to measure objects by using number lines with fractions and decimals.
Consistently	Inconsistently	Not at All	Practice 2: Provide opportunities for students to locate and compare fractions and decimals on number lines.
			a) Teachers provide activities for students to accurately locate fractions and decimals on a number line.
			b) Teachers provide activities for students to use number lines to compare the magnitude of fractions and/or decimals.
			c) Teachers model how to measure objects with precision by using fractions and decimals on a number line.
			d) Teachers instruct students how to justify the reasonableness of an answer related to measurement in fractions and decimals.
Consistently	Inconsistently	Not at All	Practice 3: Use number lines to improve students' understanding of fraction equivalence, fraction density (the concept that there is an infinite number of fractions between any two fractions), and negative fractions.
			a) Teachers instruct students how to compare equivalent fractions using number lines.
			b) Teachers demonstrate fraction density by having students place increasingly smaller fractions on a number line.
			c) Teachers help students understand that these smaller fractions represent more precise values between whole numbers.
			d) Teachers have students identify negative fractions on number lines.

©2016 The University of Texas at Austin/The Meadows Center for Preventing Educational Risk Self-Assessment: Mathematics and Mathematics Interventions licensed under Creative Commons BY-NC-ND 4.0 Principle 3: Help students recognize number systems and expand their understanding beyond whole numbers to integers and rational numbers. Use number lines as a central representational tool in teaching this and other rational number concepts.

Consistently	Inconsistently	Not at All	Practice 4: Explain that fractions can be represented as common fractions, decimals, and percentages, and develop students' ability to translate among these forms.
			a) Teachers demonstrate how numbers can be represented in different forms (fractions, decimals, percentages).
			b) Teachers develop students' understanding of how to translate among fractions, decimals, and percentages.
			c) Teachers use number lines to demonstrate equivalence between representations of rational numbers.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
Insert Total	Insert Total	Insert Total	Current Level of Implementation
Insert Total	Insert Total	Insert Total	Current Level of Implementation Level 1: No Implementation Level 2: Exploration
Insert Total	Insert Total	Insert Total	Current Level of Implementation Level 1: No Implementation Level 2: Exploration Level 3: Initial Implementation
Insert Total	Insert Total	Insert Total	Current Level of Implementation Level 1: No Implementation Level 2: Exploration Level 3: Initial Implementation Level 4: Full Implementation

Principle 4: Develop students' conceptual understanding of mathematics and provide ample opportunities to improve procedural fluency.

Consistently	Inconsistently	Not at All	Practice 1: Use area models, number lines, and other visual representations to improve students' understanding of formal computational procedures.
			a) Teachers use models, number lines, and other visual representations to improve student understanding of formal computational problems.
Consistently	Inconsistently	Not at All	Practice 2: Use meaningful fact practice activities for students lacking a strong foundation in math facts.
			a) Teachers assess the fluency of students.
			b) For students who experience difficulty with fluency, teachers explicitly teach early numeracy and operations concepts.
			c) Students who experience difficulty with fluency engage in daily practice activities for a short amount of time.
Consistently	Inconsistently	Not at All	Practice 3: Address common misconceptions regarding computational procedures.
			a) Teachers analyze students' errors to identify students who have a misconception regarding computational procedures.
			b) Teachers identify the specific type of misconception a student has for a computational procedure (wrong operation, computational error, or defective algorithm).
			c) Teachers provide targeted instruction to address specific misconceptions to prevent chronic errors.
Consistently	Inconsistently	Not at All	Practice 4: Present real-world contexts with plausible numbers for problems.
			a) Teachers present mathematical problems in real-world contexts that maintain the intended mathematical ideas.
			b) Teachers use real-world contexts that are meaningful to students and relevant to their experience.

Principle 4: Develop students' conceptual understanding of mathematics and provide ample opportunities to improve procedural fluency.

Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 5: Provide explicit and systematic instruction during instruction and intervention.			
Consistently	Inconsistently	Not at All	Practice 1: Include explicit teacher or peer modeling and demonstrate key concepts and skills.
			a) Teachers explicitly model and demonstrate key mathematical concepts and procedures using strategies like teacher "think-alouds".
			b) Teachers use precise language and examples to present clear models.
			c) Students clearly communicate appropriate mathematical steps during peer-tutoring situations.
			d) Students use the language of the teacher (or a peer) when working on a similar problem.
Consistently	Inconsistently	Not at All	Practice 2: Include worked examples of key concepts and skills.
			a) Modeling includes worked examples that the teacher or peer analyzes and discusses in the context of the step-by-step algorithm or process used to work the problem.
Consistently	Inconsistently	Not at All	Practice 3: Gradually transition from teacher-modeled problem solving to student- directed problem solving.
			a) Teachers provide students with a framework for problem solving such as a step-by-step checklist or mnemonic.
			b) Teacher coaching and prompting fades as students become more proficient.
Consistently	Inconsistently	Not at All	Practice 4: Include opportunities for students to talk aloud about the skills, knowledge, or problem-solving procedures they are learning.
			a) Teachers model thinking aloud while solving a problem, explaining the rationale for each step.
			b) Students are encouraged to verbalize their thinking and rationale for each step while solving a problem.

Principle 5: Provide explicit and systematic instruction during instruction and intervention.			
Consistently	Inconsistently	Not at All	Practice 5: Provide immediate and corrective feedback with opportunities for students to correct errors.
			a) Teachers provide immediate and corrective feedback to students.
			b) Students correct errors after receiving immediate and corrective feedback.
Consistently	Inconsistently	Not at All	Practice 6: Include sufficient, distributed, and cumulative practice and review.
			a) Teachers provide practice and review sufficient for students to develop mastery.
			b) Teachers provide practice that is distributed over time to improve retention (delayed review).
			c) Teachers provide practice that is cumulative by distributing types of problems across assignments.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 6: Instruction should include strategies for solving word and algebra problems that are based on common underlying structures.

Consistently	Inconsistently	Not at All	Practice 1: Include systematic instruction on the structural connections between known, familiar, and novel word problems.
			a) Teachers provide an organizational strategy for setting up and solving problems (e.g., an attack strategy).
			b) Teachers help students identify underlying structures of problems across a range of examples to ensure generalization.
			c) Teachers help students understand meaningful features of a problem that are similar to other problems with the same underlying structure, rather than focusing on only key words or other superficial features of the context.
			d) Teachers provide instruction and practice with known, familiar, and novel word problems.
Consistently	Inconsistently	Not at All	Practice 2: Teach common problem types and their structures, as well as how to categorize and select appropriate solution methods for each problem type.
			a) Students are able to see common problem types and connect them to viable solutions.
			b) Struggling students receive explicit instruction on organizing information presented in word problems, on common problem types, and appropriate solutions.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Laural E. Sustain addition

Principle 7: For students who struggle in mathematics, instruction and intervention materials should include opportunities to work with representations of mathematical ideas. Teachers should be proficient in the use of these representations.

Consistently	Inconsistently	Not at All	Practice 1: Employ visual representations to model mathematical concepts.
			a) Intervention incorporates concrete and visual representations of mathematical concepts to develop foundational knowledge.
			b) Instruction uses representations as a support for mathematics learning, rather than a focus of the lesson.
Consistently	Inconsistently	Not at All	Practice 2: Explicitly link a visual representation or model with the abstract mathematical symbol or concept.
			a) Teachers help students see and understand how a visual representation can be translated into abstract numbers and number sentences.
Consistently	Inconsistently	Not at All	Practice 3: Use consistent language across similar representations.
			a) Teachers communicate with consistent and precise language across representations of the same mathematical concept.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 8: Establish a school wide plan to identify and improve teachers' mathematical and pedagogical content knowledge.

Consistently	Inconsistently	Not at All	Practice 1: Assess teachers' needs in relation to mathematics content knowledge and mathematics pedagogical content knowledge across content areas.
			a) A needs assessment is conducted that includes mathematics teachers' self-reflection of their strengths and limitations and/or an objective test of their knowledge and skills.
			b) Because mathematical reasoning should be integrated across relevant content areas, a needs assessment is conducted for teachers responsible for such content.
Consistently	Inconsistently	Not at All	Practice 2: Select and implement high-quality professional development that acknowledges different teachers' needs.
			a) Professional development is targeted to support individual teachers' needs.
			b) Professional development is delivered over time allowing for knowledge growth.
			c) Professional development is situated within a collaborative environment such as a learning community or by encouraging discourse among colleagues.
			d) Professional development opportunities are evaluated for alignment with these expectations prior to implementation.
Consistently	Inconsistently	Not at All	Practice 3: Improve teachers' knowledge and understanding of making practice decisions based on research evidence and student data.
			a) Leadership provides guidance and establishes an expectation that instructional decisions are based on a review of student data.
			b) Student performance data is systematically gathered before, during, and after instruction to guide instructional and programmatic decisions.
			c) Teachers and administrators understand the types of data needed, how to collect and analyze the data, and how to make decisions and communicate regarding the results.
			d) Teachers and administrators regularly read research literature on math instruction and intervention and consider how these practices can be implemented within the local context.

Principle 8: Establish a school wide plan to identify and improve teachers' mathematical and pedagogical content knowledge.

Consistently	Inconsistently	Not at All	Practice 3: Improve teachers' knowledge and understanding of making practice decisions based on research evidence and student data.
			e) Leadership cultivates a school climate that allows for experimentation and implementation of evidence-based practices in a supportive environment.
			f) Leadership works with teachers to support fidelity of implementation.
Insert Total	Insert Total	Insert Total	Current Level of Implementation
			Level 1: No Implementation
			Level 2: Exploration
			Level 3: Initial Implementation
			Level 4: Full Implementation
			Level 5: Sustainability

Principle 9: Discontinue using practices that are NOT associated with improved outcomes for students and teachers.					
Consistently	Inconsistently	Not at All	Practice 1: Examine the evidentiary bases of practices currently used in teaching mathematics and identify and eliminate practices that are contraindicated by existing evidence.		
			a) Teachers and school administrators review research summaries and other resources for evidence regarding effective practices for teaching mathematics in the middle grades.		
			b) Teachers and school administrators examine the evidence base of practices currently used in teaching mathematics.		
			c) Practices not supported by research evidence or local student performance evidence are discontinued.		
Consistently	Inconsistently	Not at All	Practice 2: Monitor student learning formally and informally and use trend data to determine whether and how to adjust current practices.		
			a) Teachers monitor student learning formally (e.g., using summative assessments) and informally (e.g., using observation, formative assessment) and adjust practices accordingly.		
			b) Teachers use progress monitoring to identify students who need instructional adjustments to improve learning.		
			c) School administrators use data at the student, classroom, and teacher levels to make programmatic changes, eliminating programs that are not working for their students.		
Insert Total	Insert Total	Insert Total	Current Level of Implementation		
			Level 1: No Implementation		
			Level 2: Exploration		
			Level 3: Initial Implementation		
			Level 4: Full Implementation		
			Level 5: Sustainability		